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DIFFUSION STUDIES OF SEVERAL OXIDATION RESISTANT COATINGS
ON Mo-0.5Ti MOLYBDENUM ALLOY AT 2,500° F

By Bland A. Stein and W. Barry Lisagor

Crpp ot SUMMARY

{
3 [ﬁesults of a study on the diffusion effects of several silicide-base

coatings on Mo—O_5T1sgplybdenum—alloy sheet are presented. The magnitude of sub-
strate thickness losg due to solid-state diffusion at 2,500° F is presentedl?thls
indicates the possible need for diffusion barriers between coating and subbtrate
in some applications. IZTﬁe phase changes in the coatings during exposure at
2,500° F in air were studied to obtain an understanding of coating behavior. The
phases which formed were identified by X-ray diffraction techniques. From these
identifications an explanation is given for the superior oxidation protection of

one of the coatlngs. /1
Ao

INTRODUCTION

Refractory metals are frequently considered for the external surfaces of heat
shields in the thermal protection systems of aerospace vehicles. These applica-
tions may involve repeated flights which subject the heat shields to temperatures
from 2,000° F to 3,000° F for time periods of 15 minutes or longer during each
flight. Since all alloys of columbium, tantalum, molybdenum, and tungsten con-
sidered for these applications oxidize rapidly in air in this temperature range,
their use in such an application requires that they be coated. The high density
of these alloys makes it mandatory to utilize them in very thin gages, as thin as
0.001 inch in extreme cases.

A number of considerations are important to the coating used on refractory
metals in an application such as that previously mentioned. Although the most
important consideration for the thin-gage refractory metal application is reliable
protection of the substrate from oxidation, other detrimental effects caused by
diffusion must be considered. The substrate must retain sufficient strength and
ductility over the intended range of usefulness. The coating, therefore, must
not embrittle the refractory metal substrate during its application or in subse-
quent service. In addition, the coating must provide a barrier to diffusion of
gases such as nitrogen, hydrogen, and oxygen, small concentrations of which may
embrittle refractory metals at high temperatures. Since it is generally recog-
nized that the oxidation resistant coatings have negligible load~carrying capac-
ity, solid-state diffusion between the coating and the substrate must be limited
because any decrease in substrate thickness results in corresponding loss of
strength in the structural component.




There are several coating systems in various stages of development for the
refractory metals. Among these, the siliclde-base coatings have shown the most
promise to date for the protection of molybdenum alloys. Coating studies found
in the literature generally report on the coating life under given environments,
mechanical properties of coated specimens, and so forth. One such study is
reported in reference 1 for various silicide-base coatings on Mo-0.5Ti molyb-
denum alloy. However, there is little information on the diffusion problem
encountered. The study reported herein was initiated to determine the magni-
tude of the solid-state diffusion effects for several silicide-base coatings on
Mo-0.5Ti molybdenum alloy and to identify some of the mechanisms involved. The
objectives for this investigation were:

(1) To determine whether the coatings had embrittled the molybdenum-alloy
substrate beyond the range of usefulness in the coating application.

(2) To determine the magnitude of substrate loss due to solid-state diffusion
during various exposures in air at 2,500° F.

(3) To obtain some insight into the mechanisms involved in the oxidation pro-
tection and solid-state diffusion processes by identification of the several
phases present in the silicide-base coating after exposures in air at 2,500o F.

SPECIMENS AND PROCEDURES

Specimens

S The specimens used in this investigation were small coupons, lg inch by

3/4 inch by 0.012 inch (nominal before coating), machined to size by the National
Aeronautics and Space Administration from arc cast Mo-0.5Ti molybdenum-alloy
sheet. The sheet was obtained in the cold rolled and stress-relieved condition.
The specimens utilized in the present study were obtained from the same lot prl
cured for the study reported in reference 1. The thickness of each coupon was
determined by micrometer measurement and the weight of each was tabulated before
shipment to the coating supplier. The coated specimens were supplied to NASA
during the period from July to December 1961. Upon receipt of the coated speci-
mens, the weight of each specimen was again determined. Coated specimens with
the smallest deviation from the average weight were selected for the present
study. All the coatings investigated were silicide-base coatings with various
other elements added as coating modifiers in some of the coatings. The coatings,
methods of application, and coating constituents are given in table I along with
references to additional information. Relative amounts of constituents and tem-
perature time histories used in the application of the coatings on the Mo-0.5T1
molybdenum-alloy sheet were generally withheld as proprietary information by the
coating suppliers.
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Procedures

High-temperature exposure.-\The specimens were heated at ambient pressure in
slowly moving air at 2,500° F in an electric furnace and continuously weighed. J
The weighing apparatus is described in reference 1. (?gr each coating, one spec-
imen was sectioned as coated, another after 1 hour continuous exposure, another
after 8 hours continuous exposure, and another after coating fallure as evidenced
by a weight loss of at least 10 percent due to the formation of volatile MoOi. |

For these specimens which failed, enough unoxidized areas remained to permit sat-
isfactory thickness determinations.

Metallography.JfThe specimens were sheared warm (300° F to 500° F) into four
sections and embedded, edges down, in lucite.{ They were then ground successively
on No. 240, 320, %00, and 600 grit metallographic wet emery and polished in three
stages on a vibratory polisher as follows:

(1) 14 micron diamond paste on nylon
(2) 0.3 micron levigated gamma alumina on nylon
(3) 0.1 micron levigated gamma alumina on microcloth

Etch-polish-etch procedures with the Murakami etch
[}O g KﬁFe(CN)6.3H20, 10 g KOH, 100 ml Héé]

were used.

(Egickness measurements were made by using a filar micrometer eyepiece on a
bench microscope at approximately X150 magnificatioglj'The micrometer eyepiece
was calibrated against a ruled grating. Each measurement reported represents an
average of at least 12 readings on each specimen.

Microhardness measurements.—(;;crohardness measurements were made on a - /
microhardness tester, using the Knoop indenter with a 100-gram loag;J Fig- /452%{
ure 1(a) indicates the pattern in which the hardness indentations were made on

each specimen. Two cross-sectional traverses of 6 to 8 indentations were made in

the substrate, and 9 to 12 indentations were made along the center line of each
specimen beginning at the edge. In addition, hardness indentations were made in

each of the various layers of the coating where possible.

A typical pattern of Knoop indentations is shown in figure 1(b). The sub-
strate indentations indicate uniform properties throughout the cross section. The
difference in hardness between the substrate and the coating is evident. Since
the hardness of the substrate was uniform for each specimen tested, each Knoop
hardness number reported for the substrate indicates an average of at least
21 indentations. Each Knoop hardness number reported for a coating phase indi-
cates an average of at least 8 indentations.



Coating phase identifications.-{ggase identifications in the coatings were
made by combining metallographic examination and X-ray analysis. Specimens of
each coating were mounted in lucite on edge and face down for metallographic and
X-ray analysis. \The procedure for the X-ray analysis consisted of obtaining a
diffraction record by exposing the specimen to CuK, radlation on a diffractometer.

After exposure the specimen was ground by using metallographic wet silicon car-
bide papers until 0.0002 to 0.0005 inch of surface was removed as determined by
micrometer measurements. The specimen was again exposed, and another diffraction
record was obtained. | Successive grindings and exposures were made until the base
metal substrate was reached. Comparisons between the analyzed X-ray records and
photomicrographs of the same specimen on edge made possible the identification of

the coating phases present.l

RESULTS AND DISCUSSION

Metallography and Microhardness

In this section results are presented for uncoated molybdenum-alloy sheet
and for tests on the material with six different coatings. Although the purpose
of the present study was not concerned with either coating life or mechanical
property data, these results are of basic interest and are presented in figures 2
and 3 for completeness. These data are summarized from reference 1 and apply to
the coatings in the present study. Figure 2 presents the oxidation test results
under continuous and cyclic temperature exposure. In general, the life of the
coated specimens was greatly decreased under cyclic temperature exposure. In
figure 3, a summary of the tensile test results is presented. Microhardness
results, thickness results, and photomicrographs obtained in the present investi-
gation for each coating after various exposures are presented in figures 5 to 18.

General characteristics.~ The arc-cast Mo-0.5Ti sheet used in this investi-
gation was supplied in the stress-relieved condition. Typical photomicrographs
of the Mo-0.5Ti sheet before coating and in the as-~coated condition are shown in
figure 4. The cross section of the uncoated material, which has a room-
temperature ultimate strength of 133.4 ksi and an elongation of 11 percent in
2 inches, has a Knoop hardness of 398. The coating shown in figures 4(c) and (d)
is a typical silicide-base coating and is designated as coating D in table I.
The coating appears uniform and regular along the surface of the sheet but
irregular at the edges indicating the susceptibility to edge failures which are
often found with silicide~base coatings on refractory metals of thin gage. A
discussion of edge failures for the coatings investigated herein is found in
reference 1. In figures 4(c) and (d) the molybdenum-alloy substrate has been
partially recrystallized by the temperature and time required in the coating
process. The 1 hour recrystallization temperature of the 0.012-inch-thick
Mo-0.5Ti sheet used in this investigation is approximately 2,400° F (ref. 2).

(ﬂ—;;atings A and A(G).- Coatings A and A(G) were applied by a pack cementation
process. This process consists of packing the specimen in a powder mixture in a

)
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(’retort which is then heated and stabilized at a specific temperature for a suffi-
cient length of time to produce & chemical reaction between the reactive elements
in the pack and the surface of the specimen. This process produces an oxidation
resistant layer on the surface of the specimen. Although this coating was
applied to all specimens supplied by the contractor, approximately one-half were
supplied to NASA in the as-coated condition, and one-half were subjected by the
contractor to a "preglassing" treatment consisting of an exposure at 2,800° F for
1 hour in an oxidizing atmosphere. For the purpose of this study, these coatings
were treated as two different coatings - that is, coating A, which was not pre-
glassed, and coating A(G), which was subjected to the preglassing treatment. ’

N A A L R N S AL W SN Aoy by o2 N
igure 5 presents photomicrographs of typical/@}eas and hardness values for
specimens of coating A. The coating procedure recrystallized approximately

65 percent of the Mo-0.5Ti substrate of the oxidation coupons. Average thickness

values are given in table II and are shown graphically in figure 6 along with

substrate hardness and percent recrystallization as functions of process and
exposure time at 2,5000 F. After full recrystallization, the substrate hardness

did not change substantially with 8 hours exposure time at 2,500° F. There was

s small increase in substrate Knoop hardness at 260 hours. The reduction in

substrate thickness and increase in coating thickness with exposure time and the

trends of decrease in total thickness in 1 hour followed by an increase for

longer exposure times are shown in figure 6.

Similar data are presented in table II and figures T and 8 for coating A(G).
The preglassing procedure completely recrystallized the Mo-0.5Ti substrate. The
as-coated preglassed substrate, which had a tensile strength of 60 ksi at room
temperature and an elongation of 3 percent (fig. 5), had a Knoop hardness of 252.
These properties are substantially the same as those obtained for the uncoated
Mo-0.5Ti sheet exposed for 1 hour at 2,800° F in vacuum. These results indicate
that any embrittlement due to the coating or preglassing procedures was slight.
The same trends are evident for the preglassed specimens subjected to high-
temperature exposure that were discussed previously for the not preglassed
specimens.

‘ Coating B.~ Coating B is reported to be a pure silicide coating with no
additives (ref. 3). It is applied in a fluidized bed with a time-temperature
combination sufficiently low so that the coating process resulted in less than
S5-percent recrystallization of the substrate. | Photomicrographs of typical areas
and hardness values for specimens of coating B are presented in figure 9. The
as-coated substrate, which had a tensile strength of 115 ksi at room temperature
and an elongation of 8 percent (fig. 3), had a Knoop hardness of 361. The
general trend of decrease in substrate thickness with time at 2,500° F as given

in table II and fi e 10 is evident. )
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Coating C.—(g;ating C contained aluminum gnd chromium }n the pack in aéﬁ/-
tion to silicon. The coating procedure recryséélliiéa“éiiﬁdﬁimately 25 percent
of the substrate. |In cross section this coating appears irregular in thickness
in contrast to t other coatings studied which were generally uniform along the

surface of the sheet. In figure 11(a) the thickness of coating C varies from
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0.0005 inch to 0.0017 inch in the typical cross section shown for the as~-coated
condition. Thickness values, tabulated in table II and shown graphically in
figure 12, therefore tend to be less meaningful for this coating than for the
others investigated. The as-coated substrate, which had a tensile strength of
120 ksi at room temperature and an elongation of T percent (fig. 3), had a Knoop
hardness of 375. Substrate hardness change with exposure time was negligible
after full recrystallization.
&

Coatin D.-(Egéting D contained chromium in the pack in addition to silicgg;j
(See ref. ) Figure 13 presents photomicrographs of typical areas and hardness
values for specimens of coating D.( The coating procedure recrystallized approxi-
mately 5 percent of the Mo-0.5Ti substrate.| The as-coated substrate, which had
a tensile strength of 120 ksi at room température and an elongation of T percent
(fig. 3), had a Knoop hardness of 366. Average thickness values are presented
in table IT and figure 1k4. I:\f%mm&mmzy gpa s payy WL (ﬁﬁﬁv/hﬁi7
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Coating E.i’agéting E was applied in a double pack cementation prégégs -
first a chromized coating, then a silicide coating. | (See ref. 5.) Photomicro-
graphs of typical areas of specimens of coating E are shown in figure 15. | The
coating procedure recrystallized approximately 40 percent of the substrate in
the midplane of the sheet.| The average hardness of the as-coated substrate is
taken in this case as a weighted average of uniformly higher readings in the
unrecrystallized zones and uniformly lower readings in the recrystallized band.
The as-coated substrate, which had a tensile strength of 96 ksi at room tempera-
ture and an elongation of 8 percent (fig. 3), had a Knoop hardness of 3UT.
Thickness values, given in table II and shown graphically in figure 16, indicate
the reduction in substrate thickness and increase in coating thickness with
2,500° F exposure. The total specimen thickness decreased in the first hour
at 2,500° F exposure and then increased with increasing time. Substrate hard-
ness change with exposure time was negligible. _

Coayrie 7
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Coatin F.J/aoating F conﬁgiﬁéa‘EBIﬁﬁﬁfﬁﬁ“Iﬁ”tﬂé pack in addition to silicquJ
(See ref. 5.) Figure 17 presents photomicrographs of typical areas on specimens
of coating F and hardness results. The coating procedure recrystallized approxi-
mately 40 percent of the substrate in the midplane of the sheet. As indicated
for coating E, the as-coated substrate Knoop hardness of 717 is a weighted
average. The as-coated substrate had a tensile strength of 97 ksi at room tem-
perature and an elongation of 8 percent. The variations in thicknesses and sub-
strate hardness with exposure time are shown in figure 18. Substrate hardness
change with exposure time was negligible. B

L /’a’fﬁy pLpR ST e T L __/

TR s
{/;;;parison of Results for Various Coatingsl

/‘ Microhardness data.- It was noted previously for each coating in the as-
coated condition that the hardness of the substrate was either uniform through
the thickness or uniform for the recrystallized and unrecrystallized areas of
the specimens of coatings E and F. These data indicate that the application of
the coatings investigated did not embrittle the substrate beyond its range of use-
fulness. This effect was confirmed by the tensile test results. | The substrate
properties were significantly affected only by the magnitude of the temperature

) .




utilized in the coating application and not by the presence of the coating. Hard-
ness values for the specimens after the various exposures in air at 2,5000 F were
also uniform through the substrate thickness. It has been shown (ref. 4) that
substrate Knoop hardness can be severely affected just below a large crack in the
coating presumably because of penetration of atmospheric gases into the substrate.
Those data (ref. 4) indicated that the difference in hardness between the center
line and the outer edge of the Mo-0.5Ti substrate was as large as 200 Knoop num-
bers. The absence of this effect in the present investigation indicates that all
the coatings had provided a diffusion barrier at 2,500O F to significant amounts
of atmospheric gases until failure of the coatings. Knoop hardness numbers for
the substrates of each of the coatings investigated are plotted in figure 19. The
substrate hardnesses vary considerably in the as-coated condition due to the dif-
ferent amounts of recrystallization of the substrate produced by the coating
applications. After various exposures at 2,500O F, the substrate has been fully
recrystallized and substrate hardness values are approximately the same for all
coatings.

Yrﬂé;lid-state diffusion relationships.- The magnitude of the decrease in sub-
strate thickness with exposure time in air is indicated in figure 20 by the test
points for all the coatings investigated. An empirical relationship (eq. (1)) was
found to describe the substrate thickness decrease with time satisfactorily for
all the coatings investigated.

5 =8, - ath (1)
where
S substrate thickness at time 1
5o as~-coated substrate thickness
t exposure time at 2,500° F in air
a,B constants

The difficulty of measurements of change in substrate thickness for coating C,
noted previously, mekes these results less reliable than for the other coatings
and also suggests the possibility that the low diffusion rate indicated may be in
error. The constants o and B for equation (1) were calculated on the basis
of a least-squares analysis and are presented in table III for all coatings.

The correlation between the empirical curves computed from equation (1) and the
experimental points is shown in figure 20. The magnitude of the substrate thick-
ness decrease for the silicide-base coatings on Mo-0.5Ti molybdenum alloy with
time at 2,5000 F is on the order of 0.001 to 0.003 inch in the first 10 hours.
This indicates that solid-state diffusion barriers may be required when coated
refractory metals of thin gage are utilized for high-temperature service in aero-
space vehicles. /
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( Identification of Coating Phases ~J

In order to provide a more thorough description and understanding of the dif-
fusion phenomena which occur in the commercial silicide coatings and the Mo-0.5Ti1
substrate, a detailed X-ray diffraction investigation was undertaken to identify
the various phases which form by a diffusion mechanism after extended lengths of

time at 2,500° F.

Two silicide coatings were chosen for this investigation. Coating B was
chosen because it is a pure silicide with no additives. Only silicon is used
as the reactive element in the fluidized bed to produce a pure MoSis coating.
Coatings A and A(G) were chosen because of their long lives at high temperatures
as shown in figure 2. If the effect of the additions to the silicon in the
coating pack for coatings A and A(G) were understood, an.explanation for the
long 2,500° F oxidation life could be postulated.

fzagating B.~ Photomicrographs of coating B showing the growth and phase
changes which occur during exposure are presented in figure 9. In the as-coated
condition, the coating is essentially a single-phase layer of MoSip as deter-
mined by X-ray diffraction. Figures 21(a) and 21(b) show highly magnified
views of a typical specimen after 20.7 hours at 2,500° F with the various
phases identified. In figure 21(a), the remainder of the original coating
(MoSip) can be seen as a very thin layer in the outer boundary after diffusion
has occurred. Figure 21(b) illustrates the optical activity of the MoSio phase
under polarized light. Included in this layer is an appreclable concentration
of MosSiz. The MosSiz formation has occurred at the expense of the MoSis with
the liberated silicon participating in the formation of an outer glassy layer on
the specimen. It is this extremely thin layer of glass that has been postulated
to provide oxidation protection and self-healing characteristics (ref. 2)., This
layer is not visible on the photomicrographs but is evident on inspection of the
specimens after high-temperature tests. Further discussion of this phenomenon

can be found in reference 1. o
s

Adjacent to the layer of MoSi, and Mo5SiB, there is a relatively wide band
of Mo5Si5. This layer was not immediately identifiable from X-ray diffraction

patterns because of its strong preferential orientation. This preferred orienta-
tion resulted in X-ray patterns which did not readily correspond to data in the
ASTM card catalog. Because of this, arc melted buttons of the synthesized com-
pounds MoSio, Mo5Si5, and Mo5Si were obtained to further pursue the identification

of this phase. ZX-ray diffraction patterns of the Mb5Si5 button in the arc melted
condition were the same as those of the coating phase in question. The M053i3

button was then ground up, and a diffraction pattern of the powdered sample was
obtained. This pattern resulted in the normal diffraction pattern for Mo5SiB.

This indicates that the Mo5813 formed by the oxidation of MoSi, was randomly
oriented, and the Mo5Si3 formed by diffusion of silicon toward the substrate was

formed with a strong preferred orientation.




Adjacent to the MosSiz there is a very thin band next to the substrate

material. This band was too thin to be identified by X-ray diffraction but
could be expected to be Mo5Si_from stoichiometric considerations.

(/;;atings A and A(GQ).- Photomicrographs of coatings A and A(G) showing the
growth and phase changes which occur during exposure are shown in figure 5 for
specimens of coating A and in figure 7 for specimens of coating A(G). Before
preglassing, the coating is essentially a single-phase layer of MoSip but it can

be seen that the preglassing treatment itself has caused phase changes. Fig-

ure 22 shows highly magnified views of coating A(G) after 120 hours exposure at
2,500° F with the various phases identified. In figure 22, at the outer surface
the first intermetallic phase is a thin continuous band of Mo5Si5 which has formed
upon decomposition of the original MoSip with the liberated silicon reacting with

oxygen to increase the glassy layer thickness. Next to the MosSiz is a continuous

layer of MoSip. Adjacent to this phase is a relatively thick layer of Mo5Si5,

preferentially oriented as explained for coating B. AdJjacent to the layer of
Mo5Si5 there is a thin band identified as molybdenum boride silicide, Mo5(B,Si)5.

Although this band appears to provide no protection against oxidation or diffu-
gion, it does serve as an indication of the direction of mass flow. It has been
shown (ref. 6) that inert marker movement is in a direction opposite to the pre-
dominating mass flow. It can be seen from figures 22 to 24, that this phase is
moving in a direction towards the outer glassy layer indicating that diffusion of
silicon inward is the predominating mass flow. /

fféie phase adjacent to the Mo5(B,Si)5 is also Mo5Si5 formed when silicon dif-

fusion penetrates the Mo5(B,Si)5. The thin phase adjacent to the substrate is
assumed to be Mo5Sil§J

e

Y An X-ray and metallographic examination of coatings A and A(G) after 260 and
1,000 hours exposure at 2,500° F indicates that, after approximately 200 hours
exposure at 2,500° F, the Moz5i layer begins to grow appreciably in size. Fig-
ures 2% and 24 show sections of coated specimens after 260 and 1,000 hours,
respectively. Growth of the MozSi is evident. f

(&here is also evidence that the Mo5815 layer adjacent to the glassy layer
also decomposes as did the MoSi,, forming Mo5Si with random orientation and free
silicon to react with oxygen and form more glass on the surface of the specimen.(

might also be found in the outer glassy layer producing borosilicate glass in
addition to the silica produced by oxidation of the silicon.J The glassy layer of
the coating A and coating A(G) specimens may therefore be expected to. be a vis-
cous liquid over a temperature range from below 2,000° F to over 3,000° F. The
boron and traces of other additives, particularly aluminum, in the pack could
also act to retard recrystallization of the outer glassy layer thereby retaining
oxidation protection and self-healing characteristics in these coatings for long
periods of time. A qualitative discussion of these phenomena in the formation
and transitions in glass is found in reference 7.

The evidence of a bdron compound in the coating itself indicates thatgboron l/Z;




CONCLUSILONS

An investigation was made to determine the diffusion effects of several
silicide-base coatings on Mo-0.5Ti molybdenum-alloy sheet and to obtain a better
understanding of coating behavior. The following conclusions are made for the
data presented herein:

1. Solid~-state diffusion barriers may be required when using silicide-base
coatings on thin-gage refractory metals at high temperatures in aerospace vehicles.

2. The addition of detectable amounts of boron to one of the coatings appears
to have provided a significant increase in oxidation protection over the other
coatings investigated for Mo-0.5Ti molybdenum=-alloy sheet.

3. The application of the coatings investigated did not severely embrittle
the Mo-0.5Ti sheet. The changes which did occur in the mechanical properties of
the substrate were attributed to the high-temperature exposure in the coating
process. All coatings appear to have provided a diffusion barrier for the sub-
strate against atmospheric gases at 2,500° F until failure.

4, The change in substrate thickness with exposure time at 2,500° F was sat-
isfactorily described by an empirical relationship for the coatings investigated.

5. The X-ray diffraction techniques appear well suited for identification of
coating phases as thin as 0.0001 inch and thus provide a means for identification

of phase changes in coatings.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 5, 1963.
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TABLE I.- PERTINENT INFORMATION FOR SEVERAL OXIDATION RESISTANT COATINGS

FOR Mo-0.5Ti MOLYBDENUM ALLOY

. Method of Constltuegt Source
Coating application elements in of
pp-icatt pack or bed information
A 2-cycle pack si, B, Cr, Ref. 3, p. 111
Aoy o cementation Cb, A1, C
A(G) 2-cycle pack si, B, Cr, Ref. 3, p. 111
Pk TE cementation Cb, A1, C
plus 1 hour
preglassing
treatment
at 2,800° F
B Fluidized Si Ref. 3, p. 9
g i bed
C 2-cycle pack 5i, Al, Cr Ref. 3, p. 103
Voven cementation
D 2-cycle pack Si, Cr Ref. 4
C””%/f;ﬂf cementation
E 2-cycle pack 5i, Cr Ref. 5
f}ﬂﬂnﬂnﬂ cementation
F l-cycle pack 51, Cb Ref. 5

) -
/)/7'/7 R IR '\'(/,’/ - /r)

cementation
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TABLE IT.- EFFECTS OF EXPOSURE TIME IN AIR AT 2,500° F ON SPECIMEN, COATING,

AND SUBSTRATE THICKNESSES FOR COATED Mo-0.5Ti MOLYBDENUM-AILOY SHEET

. Substrate Coating
Coating Length of exposure, | Total Fhlckness, thickness, | thickness,
hr in. in. in.
A Before coating 0.0122
As coated .0133% 0.0099 0.0017
1 .0128 .0096 .0016
8 .0131 .0099 .0016
260 L0143 .0051 .0046
A(G) Before coating 0.0122
As coated .0126 0.0092 0.0017
1 .0126 L0075 .0025
8 .0130 0072 .0029
1,000 .0152 .0055 .0049
B Before coating 0.0108
As coated L0111 0.0081 0.0015
1 .0120 .0095 .0016
8 .0112 .0072 .0020
29.1 0121 L0067 .0027
C Before coating 0.0120
As coated 0134 0.0106 0.001k4
1 .0115 .0095 .0010
8 0137 .009% .0022
22.1 .0125 0097 .001k
D Before coating 0.0121
As coated .0133 0.0109 0.0012
1 .0132 .0102 .0015
8 .0130 .0090 .0020
25.1 .0L3k .0072 .0031
E Before coating 0.0118
As coated 0137 0.0091 0.0023
‘ 1 .0119 .00TL 0024
8 .0133 .0059 0037
70.1 0146 .0056 0045
F Before coating 0.0116
As coated 0135 0.0097 0.0019
1 .0132 .0080 .0026
8 .0130 L0074 .0028
I .0148 .0068 .0040
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TABLE III.- CONSTANTS FOR THE FORMUIA S = Sy - amﬁ DESCRIBING
Mo-0.5Ti SUBSTRATE THICKNESS DECREASE WITH

EXPOSURE TIME IN AIR AT 2,500°0 F

Coating ?0’ a . B
in.
A 0.0099 0.0003%0 0.248
A(G) .0092 . 00165 L1153
B .0081 .00033 4510
C .0106 .00110 .0762
D .0109 .00073 .5090
E .0091 .00207 L1323
F .0097 .00171 .1355




Knoop hardness indentation

Coating
Substrate
e >
=
ko <
> ><
o >
e - & e
- >
o ot
>< > > 2z
> Asa > WMW“’””

(a) Pattern used to obtain hardness data.

T e s Boang < v

(b) Photomicrograph showing typicel Knoop indentations.  X160. 1-63-4768

Figure l.- Procedures for herdness investlgations on cross gections of coated Mo-0,5T1 specimens.
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] Continuous test
Cyclic test (1.0-hour cycles)

A(G) W } =450
A |

FWI I I I I |

0 20 40 60 80 100 120 140
Accumulated time to 10 percent weight loss, hours

Figure 2.- Continuous and cyclic exposure coating life for various coatings on
Mo-0.5T1 molybdenum-alloy sheet (ref. 1).

3] Strength
Elongation

Uncoated

A(G)

B e

C L s izl ZadiZ s

D [ Lz s

E [/ gzl 2 e

FIII

0] 20 40 60 80 100 120
Ultimate tensile strength, ksi

| I l ] | |

0 2 4 6 8 10 12
Elongation in 2 inches, percent

Figure 3.- Results of tensile tests at room temperature of uncoated and coated

Mo-0,5T1 molybdenum-alloy sheet specimens from reference 1. Strength 1s
based on cross-sectlional area before coating.




{a) Before coating, (b) Before coating at-tumbled edge.

(c) As coated. () As coated at tumbled edge, ,
L-63-4769

Figure 4,- Typical cross-sectional views of Mo-0.5T1 sheet before and after coating. X200.
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L-63-4T778
Figure 22.-~ Cross-sectional view of coating A{G) after 120 hours exposure
at 2,500° F in air. X500.
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L-63-4779
Figure 23.-~ Cross-sectional view of coating A after 260 hours exposure
at 2,500° F in air. X500.

— MO5Si5
MO5(B,Si)3
MOBSl

T—-Mo -0.5Ti

L-63-4780
Figure 24.- Cross-sectional view of coating A(G) after 1,000 hours exposure
at 2,500° F in air. X500.
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“The aeronautical and space activities of the United States shall be
conducted 5o as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space.  The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the resulls thereof.”

__NATIONAL AERONAUTICS AND SPACE ACT OF 1958 4

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with 2 NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,

and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION .
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546 }




